EPR of Gamma Irradiation Damage Centres in Single Crystals of Some Phosphonates and Derivatives

Erdal Aras, Nurcan Acara, and Mehmet Birey

Ankara University, Faculty of Science, Department of Physics, 06100 Tandoğan, Ankara, Turkey ^a Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandoğan, Ankara, Turkey

Reprint requests to Prof. M. B.; E-mail: MehmetBirey@science.ankara.edu.tr

Z. Naturforsch. 58a, 299 – 302 (2003); received March 26, 2003

The EPR spectra of the phosphorous centred radicals produced by γ -irradiated single crystals of three phosphorous compounds have been observed and identified as the free radicals (OCH₃)₂PO and (OCH₃)₂PO.

Key words: Electon Paramagnetic Resonance; Free Radical; Phosphonate Derivatives.

Free radicals produced by γ -irradiation in single crystals of dimethyl methylphosphonate (1), dimethyl ethylphosphonate (2) and dimethyl phosphonate (3) have been investigated between 70 and 350 K with EPR. The single crystal spectra have been taken at 5-degree intervals with the magnetic field B lying in each of the three crystallographic planes ab, bc, and ca.

Figures 1 and 2 show the spectrum of 1 and 2 with its hyperfine splittings. In these spectra, 14 lines are observed due to $(OCH_3)_2\dot{P}O$ radicals. Owing to these radicals, the spectra exhibit a doublet (1:1) because of the ^{31}P nucleus. Each of the lines splits into 7 lines (1: 6: 15: 20: 15: 6: 1: 1: 6: 15: 20: 15: 6: 1) due to the $(OCH_3)_2\dot{P}O$ radical in 1 is about 0.77, 0.55, and 0.48 mT and the ^{31}P splitting is approximately 5.5, 3.4, and 2.5 mT. The proton splittings for the $(OCH_3)_2\dot{P}O$ radical in 2 are about 0.66, 0.42, and 0.33 mT, and the ^{31}P splitting is approximately 5.5, 3.5, and 2.4 mT.

Such a result can arise if the unpaired electron interacts equally whith the $(OCH_3)_2$ protons. The radicals most likely formed in irradiated 1 and 2 which fit these requirements are $(OCH_3)_2\dot{P}O$ radicals. The angular variations of the $g(\theta)$ and $A(\theta)$ tensors are computed from the experimental angular variations about the axes a,b,c. All the values obtained from the $(OCH_3)_2\dot{P}O$ radicals are given in Table 1. The hyperfine constant of $(OCH_3)_2\dot{P}O$, (a_H) has been observed in the crystallographic planes ab,bc, and ac. Our average value of the phosphorus splittings attached directly to the $(OCH_3)_2$ is about 3.8 mT, the proton splittings are approximately 0.48 mT. These values agree well

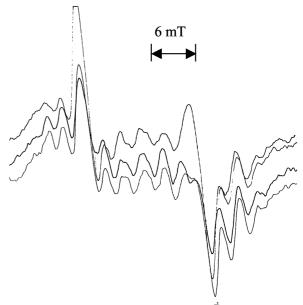


Fig. 1. EPR Spectrum of $(OCH_3)_2\dot{P}O$ radicals in $C_9H_{12}ClO_4P$ after irradiation at 300 K.

those derived from $(CH_3)_2\dot{P}O$ in trimethylphosphine, methylphosphine, and dimethylphosphine [1,2]. The spin densities at the phosporus atom can be evaluated from the experimental splitting by using Mc Connel's equation $a_\rho = \rho Q$; $a_\rho = 0.82$ and this indicates that in the $(OCH_3)_2\dot{P}O$ radical 82% of the spin density is on the phosphorus atom. Such a result can arise if the unpaired electron interacts equally with the $(OCH_3)_2$ protons due to long-range interaction [3,4]. Figure 3 shows the spectrum of 3 with its hyperfine splitting. In

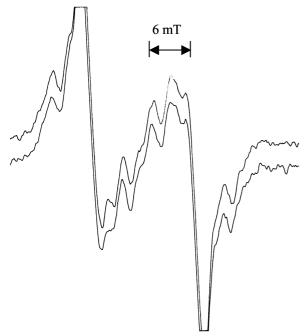


Fig. 2. EPR Spectrum of $(OCH_3)_2\dot{P}O$ radicals in $C_{10}H_{15}O_4P$ after irradiation at 300 K.

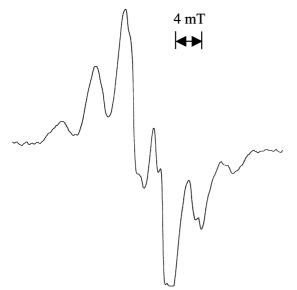


Fig. 3. EPR Spectrum of $(OCH_3)_2P\dot{O}$ radicals in $C_{11}H_{15}O_4P$ after irradiation at 300 K.

these spectra, 14 lines are observed due to $(OCH_3)_2PO$ radicals.

Owing to the $(OCH_3)_2PO$ radicals, the spectra exhibit intensity ratios 1: 6: 15: 20: 15: 6: 1 due to $(OCH_3)_2$ protons, and each of the lines splits into dou-

Table 1. The EPR parameters of the $(OCH_3)_2\dot{P}O$ radical observed in $C_9H_{12}CIO_4P$ and $C_{10}H_{15}O_4P$ singe crystals.

Radical	values $a_{\rm p}({ m mT}),$ $a_{\rm H}({ m mT})$ and g		Direction cosines		
	a_{P}	5.3	0.97235	0.17788	0.15129
		3.4	-0.12755	0.13813	-0.98217
		2.5	0.19561	0.97431	0.11163
	$a_{(P)av}$	3.8			
(OCH ₃) ₂ PO	a_{H}	0.77	0.23133	-0.85863	-0.45743
		0.55	0.57886	-0.25641	0.77406
		0.48	-0.78192	-0.44385	0.43771
	$a_{(H)a}$	0.60			
	v				
(OCH₃)₂PO	g	2.0044	0.31639	-0.93050	-0.18456
		2.0033	0.81804	0.36612	-0.44357
		2.0028	0.48032	-0.01064	0.87703
	$g_{\rm av}$	2.0035			
	$a_{\rm P}$	5.5	0.96987	-0.20068	-0.14932
		3.5	-0.19658	-0.02586	-0.89271
		2.4	0.21456	-0.96986	0.12001
	$a_{(P)av}$	3.8			
	$a_{\rm H}$	0.66	0.24869	0.58711	-0.31996
		0.42	-0.61657	-0.19209	-0.67386
		0.33	-0.14896	0.38786	0.65842
	$a_{(H)a}$	0.47			
	v				
	g	2.0038	0.29532	-0.89902	-0.18399
	•	2.0078	0.79804	0.40058	-0.45017
		2.0035	0.47232	-0.11068	-0.76701
	$g_{\rm av}$	2.0051			

Table 2. The EPR parameters of the (OCH3)2PO radical observed in $C_{11}H_{15}O_4P$ singe crystals.

Radical	Pri	ncipal			
	values		Direction cosines		
	$a_{p}(mT)$,				
	$a_{\rm H}({\rm m}$	T) and g			
	a_{H}	1.03	0.96116	-0.16603	-0.14023
		0.80	-0.11659	0.12689	-0.89220
		0.51	0.21462	0.96312	0.10063
	$a_{(H)av}$	0.78			
	$a_{\rm P}$	0.77	0.22028	-0.86063	-0.44743
		0.35	0.57866	-0.24641	0.77428
(OCH ₃) ₂ PĊ		0.23	-0.77193	-0.43389	0.42752
	$a_{(P)av}$	0.45			
	g	2.0049	0.30539	-0.94052	-0.20735
		2.0043	0.81804	-0.35412	-0.44357
		2.0024	-0.48032	0.01047	0.87712
	$g_{\rm av}$	2.0039			

blet lines (1:1:6: 6: 15:15: 20:20: 15: 15: 6: 6: 1:1) due to the ^{31}P atoms. The proton splittings for the (OCH₃)₂PO radicals are about 1.03, 0.8, and 0.51 mT, and the ^{31}P splitting is approximately 0.77, 0.35, and 0.23 mT. All the values obtained from the (OCH₃)₂PO

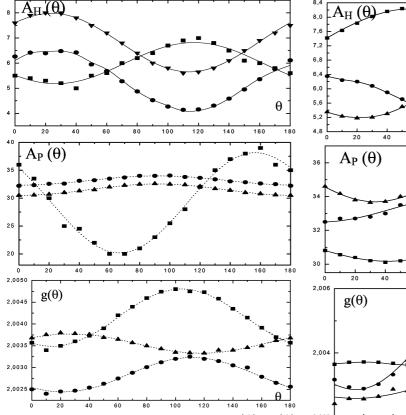


Fig. 4. The angular variations of the $A_{\rm H}(\theta), A_{\rm P}(\theta)$ and $g(\theta)$ tensor for the (OCH₃)₂ \dot{P} O radical in the $C_9H_{12}ClO_4P$.

radicals are given in Table 2. The values of the hyperfine splitting, the g factor and the spin density of $(OCH_3)_2P\dot{O}$ radicals are $a_{\rm av(H)}=0.78$ mT, $a_{\rm p}=0.45$ mT, $g_{\rm av}=2.0032$ and $\rho_{\rm p}=0.7\%$, $\rho_{\rm H}=1.5\%$, and $\rho_{\rm O}=98\%$, respectively. These agree well with the trimethyl phosphite given in [5]. The g and hyperfine constant values of this radical are given in Table 2.

Experimental

The single crystals in this work were grown in the laboratory by slow evaporation of concentrated ethyl alcohol and petrol ether solutions of the compound. From the X-ray diffraction studies we have found that the single crystals of $C_9\,H_{12}\,Cl\,O_4\,P$ are orthorhombic with space group $P2_12_12_1$ and their unit cell dimensions are a=7.5666, b=7.9229, and $c=12.0421\,\text{Å}$. There are 4 molecules in a unit cell. The single crystal structure is shown in Figure 6.

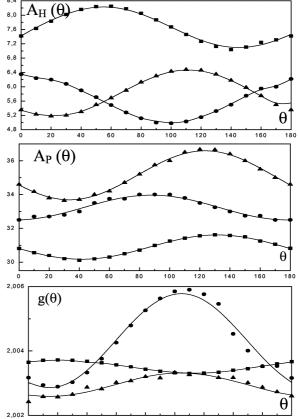


Fig. 5. The angular variations of the $A_{\rm H}(\theta), A_{\rm P}(\theta)$ and $g(\theta)$ tensor for the (OCH₃)₂ \dot{P} O radical in the C₁₀H₁₅O₄P.

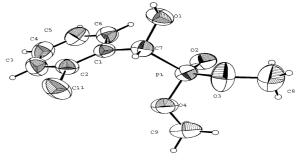


Fig. 6. The molecular crystal structure of single crystals of C₉H₁₂ClO₄ P.

The crystals were irradiated at room temperature by a $^{60}\text{Co}-\gamma$ ray source of 0.3 M rad/h $^{-1}$ for 72 hours. The spectra were recorded with a varian E109 C model ESR spectrometer using 2 mW power. The low and high temperature measurements were carried out using a variant temperature control unit between 70 and 350 K. The crystals were rotated on a lucite pillar about

their crystallographic axes, and the angles of rotation were read on a scale marked with lines from known single crystals several times. The g factors were found by comparison with a DPPH sample (g = 2.0036).

- A. D. Davies, D. Griller, and B. P. Roberts, Christopher Ingold Laboratories, University College, 20 Gordon Street, London WCIH OAJ.
- [2] P.J. Krusic, W. Mahler, and J.K. Kochi, Contribution No: 1882 from the Central Research Department, E.I. du Pont de Nemours and Company, Wilmington, Delaware 19898 and Contribution No: 2101 from the Department of Chemistry, Indiana
- University, Bloomington, Indiana 47401, received December 6, 1971.
- [3] M. Geoffrey, L. Ginet, and E. A. C. Lucken, Molecular Phys. 28, 1289 (1974).
- [4] M. Geoffroy and E. A. C. Lucken, Molecular Phys. V. **24**, 335 (1972).
- [5] T. Gillibro, C. M. L. Kerr, and F. Williams, Molecular Phys. V. 28, 1225 (1974).